- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Hoyois, Marc (3)
-
Annala, Toni (1)
-
Asok, Aravind (1)
-
Iwasa, Ryomei (1)
-
Jelisiejew, Joachim (1)
-
Nardin, Denis (1)
-
Totaro, Burt (1)
-
Wendt, Matthias (1)
-
Yakerson, Maria (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study the Hilbert scheme\mathrm{Hilb}_{d}(\mathbf{A}^{\infty})from an\mathbf{A}^{1}-homotopical viewpoint and obtain applications to algebraic K-theory. We show that the Hilbert scheme\mathrm{Hilb}_{d}(\mathbf{A}^{\infty})is\mathbf{A}^{1}-equivalent to the Grassmannian of(d-1)-planes in\mathbf{A}^{\infty}. We then describe the\mathbf{A}^{1}-homotopy type of\mathrm{Hilb}_{d}(\mathbf{A}^{n})in a certain range, fornlarge compared tod. For example, we compute the integral cohomology of\mathrm{Hilb}_{d}(\mathbf{A}^{n})(\mathbf{C})in a range. We also deduce that the forgetful map\mathcal{FF}\mathrm{lat}\to\mathcal{V}\mathrm{ect}from the moduli stack of finite locally free schemes to that of finite locally free sheaves is an\mathbf{A}^{1}-equivalence after group completion. This implies that the moduli stack\mathcal{FF}\mathrm{lat}, viewed as a presheaf with framed transfers, is a model for the effective motivic spectrum\mathrm{kgl}representing algebraic K-theory. Combining our techniques with the recent work of Bachmann, we obtain Hilbert scheme models for the\mathrm{kgl}-homology of smooth proper schemes over a perfect field.more » « lessFree, publicly-accessible full text available April 9, 2026
-
Annala, Toni; Hoyois, Marc; Iwasa, Ryomei (, Journal of the American Mathematical Society)We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable -category of non- -invariant motivic spectra, which turns out to be equivalent to the -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this -category satisfies -homotopy invariance and weighted -homotopy invariance, which we use in place of -homotopy invariance to obtain analogues of several key results from -homotopy theory. These allow us in particular to define a universal oriented motivic -ring spectrum . We then prove that the algebraic K-theory of a qcqs derived scheme can be recovered from its -cohomology via a Conner–Floyd isomorphism\[ \]where is the Lazard ring and . Finally, we prove a Snaith theorem for the periodized version of .more » « less
-
Asok, Aravind; Hoyois, Marc; Wendt, Matthias (, Algebraic Geometry)
An official website of the United States government
